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Santo André, São Paulo, Brazil

13.1 Introduction

Clusteringanalysisaims tofindthemostnaturalwayofgroupingadataset.
Normally, this is achieved by the application of unsupervised algorithms
which organize a collection of n observations (X1; X2 ;.; Xn ) into K
groups (g1; g2 ;.; gK ) based on a similarity criterion, such that
observations in the same group are more alike than observations in different
groups.

Fig. 13.1 illustrates three possible distributions that we can find in a
dataset. In Fig. 13.1A, we see a distribution of red dots with a clear-cut
separation between two groups. If we look at the density distribution
across variable x2 (represented with a red line in Fig. 13.1E), we can see a
single peak. However, if we look at its density distribution across x1
(represented with a red line in Fig. 13.1D), we can see two clear peaks.
When a dataset presents with more than one peak in the density distri-
bution of at least one of its variables, we call this a multipeak distribution
(also known as multimodal distribution, referring to the presence of
multiple statistical modes in the distribution). In Fig. 13.1B, we can also
see a multipeak distribution; however, in this case there is no clear-cut
separation between groups. Finally, in Fig. 13.1C, we have a uniform
distribution in which we cannot see any clear peaks.

Clustering analysis is a common approach when there is a multipeak
distribution of observations in the dataset. However, clustering analysis
can also be used to classify observations in distributions without clear-cut
separation among groups and even to classify observations in uniform
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distributions. An example would be the classification of the frequency
distribution of the light spectrum into distinct groups (i.e., colors), which
is routinely used in many scientific contexts and in everyday life. Like-
wise, most disorders are characterized by a continuous distribution of
clinical symptoms, with patients lying at different points across the
disorder spectrum. In addition, some disorders can present multipeak
continuous distributions, with unclear boundaries between the different
diagnoses. A potential issue with some clustering methods is that distinct
groups will be found even when there is no multipeak distribution in the
dataset. For this reason, before interpreting the results of these methods, it
is important to check if the data do have a multipeak distribution. In the
absence of such distributions, one can still use clustering to determine
underlying patterns of interest in the data; however, the results should not
be interpreted in terms of well-separated categories.

A key benefit of clustering analysis is the ability to shed light on the
underlying structure of a dataset even when its properties are not
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FIGURE 13.1 Examples of multipeak and uniform distributions. Panel (A) show amulti-
peak distribution with a clear-cut separation between groups; panel (B) shows a multipeak
distribution without a clear-cut separation between groups; panel (C) shows a uniform dis-
tribution; panel (D) shows the densities of the three distributions across; and panels (E), (F),
and (G) show the density of each distribution across variable. Distribution in panel (A) is
shown as a dashed line, distribution in panel (B) is shown as a doted line and distribution
in panel (C) is shown as a solid line.
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obvious. Two-dimensional distributions are often self-explanatory with
distinct peaks being easily identified; here clustering analysis has limited
applicability. In contrast, in multidimensional distributions, it can be very
difficult to spot groups or overdensities; here clustering analysis can be
very useful as an alternative to classification when labeled data are not
available. Furthermore, in some cases, one can use labeled data in
clustering analysisdan approach known as semisupervised learning.
While we do not cover semisupervised learning in this chapter, we refer
the reader to Chapelle, Schölkopf, Zien, Schlkopf, and Zien (2006) for a
detailed description of this approach.

There are several cluster algorithms available in the literature (e.g.,
Fahad et al., 2014; Shirkhorshidi, Aghabozorgi, Wah, & Herawan, 2014).
In general, all involve the following main tasks: (1) feature selection, i.e.,
the selection of the features to be included in the clustering analysis,
taking theoretical and practical considerations into account, with each
observation X being defined by N features, X(x1; x2;.; xN); (2) choice of a
similarity metric, the mathematical function that defines the similarity
between observations in the dataset (e.g., Euclidean, Manhattan dis-
tances); (3) application of the grouping criterion via a clustering algorithm
that organizes the observations according to their similarities; and (4)
cluster validation, an evaluation of the reliability of the derived groups.
The grouping criterion is the core of clustering analysis, as it defines how
the observations are assigned to each cluster.

The clustering algorithms can be classified based on three main char-
acteristics. First, they are either partitional or hierarchical, meaning that
they divide the observations into simple groups (i.e., partitional) or into
groups and subgroups (i.e., hierarchical). Second, they are either hard or
soft clustering algorithms. In hard clustering, each observation is assigned
to a single class, whereas in soft clustering each observation receives a
probability of belonging to each class. Finally, they are either centroid-
based or density-based. Centroid-based clustering assigns the observa-
tion with respect to their distance to the center of the cluster, while
density-based algorithms assign objects based on the local density around
the observation.

Clustering analysis is not without limitations. The main drawback is
that it relies on expert knowledge of the field to interpret the results, as in
many cases there are no labeled data and no other means to derive
meaning from the resulting groups. Another drawback relates to the
determination of the number of groups. While some clustering algorithms
require the researcher to specify this number as an input of the model,
others have hyperparameters that influence the number of groups
derived. There are some cluster validation techniques that can help
determine the optimal number of groups; however, these are not always
reliable (Milligan & Cooper, 1985). A final drawback is that, sometimes,
the most natural way of grouping the available data does not necessarily
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reflect the groups of interest within the context of a research projectdan
issue that could be addressed by selecting features that have greater
relevance to the scientific aim of the study.

In this chapter, we present K-means, one of the simplest clustering
algorithms, and in particular, we use this method to illustrate the main
virtues and limitations of clustering analysis (Section 13.1.1.1). In Section
13.1.1.2, we discuss the important topic of cluster validation, whereas in
Section 13.1.4.1 we cover the limitations of K-means. Alternative algo-
rithms are suggested in Section 13.1.4.2. In the final part of the chapter, we
show some applications of clustering analysis to brain disorders (Section
13.1.5), before presenting some conclusive remarks (Section 13.1.6).

13.2 Method description

13.2.1 The algorithm

K-means is a type of clustering analysis that was first developed in the
1950s (Ball & Hall, 1965; Macqueen, 1967; Lloyd, 1982; Steinhaus, 1956)
and has a long history of being applied to the investigation of brain
disorders. For instance, in the 1980s, it was used to identify subgroups of
patients with schizophrenia who showed different clinical presentations
(Farmer, McGuffin, & Spitznagel, 1983). Because of its efficiency and
simplicity, it is one of the most used algorithms in the literature. Fig. 13.2
shows the steps taken by the algorithm to split a dataset into nonover-
lapping clusters. The first step is to choose the number of clusters, the K in
K-means. The second step is to define K initial cluster centers, as illus-
trated in Fig. 13.2B; this second step is called the initialization of the
algorithm and can be done randomly or using some more sophisticated
algorithms, such as K-meansþþ (Arthur & Vassilvitskii, 2007). The third
step is to assign each observation in the sample to the most similar cluster,
according to the chosen similarity metric; in this example, we are using
Euclidean distances, as illustrated in Fig. 13.2C. The convergence of the
algorithm is achieved via the repetition of steps 3 and 4, by redefining the
cluster centers based on the centroid of the observations assigned to each
cluster, as shown in Fig. 13.2D. Fig. 13.2E illustrates the repetition of steps
3 and 4 until a convergence criterion is met. Usually, the convergence
criterion is either a threshold in the within-cluster variance or a minimal
number of reassignations of the observations between two consecutive
iterations.

13.2.2 Cluster validation

In this section, we discuss the important topic of cluster validation by
focusing on three key issues: (1) measure of reliability, (2) choice of k, and
(3) testing for a multipeak distribution.
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Measure of reliability

In supervised classification, one splits the labeled data into two and
then uses one part to train the machine learning model and the other part
to validate it. In unsupervised learning, the labeled data are often
unavailable, and therefore it is important to establish some metrics to
determine the reliability of the models. This is known as cluster valida-
tion. Here, the simplest measurement of reliability is the sum of squared
error (SSE), defined as

SSE¼
XK

j

X

iεgj Xi � mj

nj

!

where mj is the mean of the nj objects in the group gj. The SSE is the cu-
mulative difference among observations in each group; in other words, it
measures how similar are the observations within groups. As mentioned
at the beginning of this chapter, clustering analysis aims to group obser-
vations such that the ones in the same group are similar to each other.
Therefore, the lower the SSE, the closer we are to achieving this aim.
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FIGURE 13.2 This figure illustrates the main steps in K-means clustering. Panel
(A) shows the unlabeled data; panel (B) shows the initial cluster centers (step 2); panel
(C) illustrates the Euclidean distance measurements from the cluster centers to each point
and the assignation of the objects to the closest center (step 3); panel (D) illustrates the reas-
signation of the centers to the centroid of the objects in each cluster, with the previous centers
shown in darker colors, and the new centers shown in lighter colors (step 4); panel
(E) represents the repetition of steps 3 and 4; and panel (F) shows the result of the algorithm
converged.
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Given the randomized nature of the initialization of the algorithm, each
time K-means is run on a dataset will lead to a different result, and each
run will have its corresponding SSE. This is shown in Fig. 13.3, which
illustrates how the initialization can impact on the final solution. In this
case, we have the ground truth labels for the observations, and therefore
we can use them to calculate the accuracy score to assess how K-means
behaves (see Chapter 2 for information on how to perform this calcula-
tion). The figure shows that 4 out of 5 times the algorithm can give
accuracies of around 89%; however, in one of the runs, it results in a
solution with about 49% accuracy. In the context of optimization, this is
known as convergence to local minima. To overcome this problem,
K-means algorithms are often implemented to run multiple times and
select the solution with the lowest SSE. In Fig. 13.3 we show the accuracy
of scores and the SSE for each classification. It ca be seen that the highest
accuracies coincide with the lowest SSEs. As the SSE is very similar for
solutions with the highest accuracies, it does not help us choose the best
solution; however, it clearly helps us discard poor solutions.

Choosing K with silhouette scores

In K-means, as in many other clustering algorithms, the number of
clusters is a fundamental input parameter. Determining the optimal

(A) (B) (C)

(D) (E) (F)

FIGURE 13.3 Examples of how initialization impacts in the final groups derived by
K-means. Each panel corresponds to a different K-means initialization. In all panels, the three
groups are indicated using the colors red (gray in print version) circles, yellow triangles
(light gray in print version), and blue squares (dark gray squares in print version), respec-
tively. The percentage of correctly classified observations (ac) is shown in the bottom left in-
sets followed by the sum of squared error (SSE).
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number of clusters, therefore, is also one aspect of cluster validation. In
Fig. 13.2, it is trivial to conclude there are three main groups, but in
multidimensional datasets, determining the number of clusters can be
very challenging. There is no universal solution to this problem; however,
the literature offers a range of possible methods which are reviewed in
detail elsewhere (Halkidi, Batistakis, & Vazirgiannis, 2001; Jain, 2010;
Steinley, 2006). One of these methods is the silhouette score (Rousseeuw,
1987). This score corresponds to the mean silhouette values si, defined as

si¼

8
><
>:

1� dwðiÞ=dbðiÞ; if dwðiÞ < dbðiÞ
0; if dwðiÞ ¼ dbðiÞ
dwðiÞ=dbðiÞ� 1; if dwðiÞ > dbðiÞ

;

where dwðiÞ is the mean within-cluster distance, i.e., the mean of the
distances from observation i to all the observation within its group, and
dbðiÞ is the mean between-cluster distance, the mean of the distances from
observation i to all the observation in other groups, for each Xi in the
sample. As si will always be between�1 and 1, so will the silhouette score.
The silhouette score is 1 when all the clusters are well separated and is
0 when the clusters are completely overlapping. To determine the optimal
number of clusters, we need to measure the silhouette score for groupings
with a different number of clusters. The classification with the highest
silhouette score corresponds to the group configuration with the
maximum separation among clusters.

The silhouette score has its limitations. First, the algorithm requires the
calculation of the complete distance matrix of the dataset, which can be
impractical for large volumes of data. The silhouette score can also return
the wrong number of clusters depending on the geometry of the groups in
the dataset, and furthermore, it can return random values when con-
fronted with a homogeneous random distribution. Therefore, one should
only trust this method when a clear peak is present in the silhouette score
measurements. In addition, when applying clustering analysis to distri-
butions without clear-cut separation among groups, the choice of K
should be driven by the meaning of the derived groups, based on
previous qualitative analysis. Adolfsson, Ackerman, and Brownstein
(2018) have introduced a novel methodology to determine whether or not
there is an underlying multipeak distribution in a dataset. This method-
ology could be used to confirm the nature of the distribution and interpret
the results of the silhouette score (see Adolfsson et al., 2018 for detail).

Testing for a multipeak distribution

As we mentioned earlier, it is important to know whether or not the
underlying distribution is multipeak. Only when applying clustering
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analysis to a multipeak distribution, one can trust the results of analytical
tools as the silhouette score. Therefore, the best practice is to start with
some exploratory statistical analysis to determine the distribution of the
observations before applying any clustering models. There are a number
of methods that can be used to test for multipeak distribution. In these
methods, the null hypothesis is that the data are generated by a single-
peak distribution. When we apply this sort of tests to a dataset, the
p-value reflects the probability of drawing that dataset from a single-peak
distribution. Therefore, if the p-value is small enough, we can assume the
distribution is multipeak. One of the most popular methods to test for
multipeak distribution is the dip test (Hartigan & Hartigan, 1985), which
measures the difference between the empirical distribution of the data
and a hypothetical single-peak distribution. Although the dip test is
unidimensional, it can be applied to multidimensional data using the
pairwise distances of the observations in the dataset, as prescribed by
Adolfsson et al. (2018). Once multimodality is confirmed, we can proceed
with the silhouette score analysis to determine the optimal number of
clusters in the dataset.

13.2.3 Main drawbacks of K-means

In this section, we present the most discussed drawbacks of K-means.
We will see that some of these are common to most clustering algorithms,
some are specific to K-means, and some are overstated concerns which do
not represent actual drawbacks. Here is a comprehensive list:

(a) K-means always return groups even when there are no actual groups in the
distribution. As mentioned before, K-means always returns groups
of observations, much in the same way as linear regression always
returns a line, even if applied to an exponential distribution. This is
also true for most of the clustering algorithms and should not be
seen as a drawback, but as a characteristic of the method to be taken
into account. If we attempt to divide a uniform distribution of
observations into two groups, K-means will successfully return two
groups of observations. This becomes a problem only if one
interprets this division of the data as proof of the existence of two
well-defined groups in the distribution, which would be incorrect.

(b) The number of clusters must be inputted into K-means. K-means
requires the number of clusters to be defined a priori. However,
most of the other cluster algorithms rely on the same requirement.
There are some algorithms that do not require this; however, these
depend on other hyperparameters that impact on the number of
derived clusters. There are some methods that can help in the
search for the optimal number of clusters, such as the silhouette
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score discussed earlier, but all of them require careful application
and interpretation. The same can be said about other clustering
algorithms that use hyperparameters to determine the number of
clusters; in this case, the issue is how to best tune these
hyperparameters.

(c) K-means does not guarantee convergence to global minima. As we have
discussed in Section 13.1.1.2, sometimes K-means converges to a
local minimum. We have seen that this problem is solvable by
repeating the clustering process many times and comparing its
outputs. Nanetti, Cerliani, Gazzola, Renken, and Keysers (2009)
showed that, to find the global solution when performing
connectivity-based cortical segmentation using diffusion-weighted
images, it is necessary to run the algorithm more than 250 times. As
K-means is much less computationally intense than other clustering
algorithms, often it will be faster to run it hundreds of times than to
run an algorithm that guarantees convergence to global minima
just once. This can vary with the dimensionality of the problem and
the shape of the clusters.

(d) K-means does not work well when the data are not linearly separable.
K-means generates nonoverlapping clusters based on the similarity
criterion measured with respect to the cluster center. Euclidean
distance is the similarity criteria most often applied with K-means.
In this case, the decision boundaries can only be linear, and
therefore the algorithm does not work well when data are not
linearly separable. However, if another similarity criterion is
applied, or the data are previously transformed to become linearly
separable, then the algorithm can work well.

(e) K-means does not perform well when clusters have different scales,
different shapes, or an unbalanced number of observations. These
problems are illustrated in Fig. 13.4. In this figure, we have four
clusters violating the main assumptions of K-means: group I is
nonspherical (diversity in shapes), group II has 4.5 times the size of
groups III and IV (diversity in scales), and group IV has the same
scale of group III but fewer observations (unbalanced groups). In
Fig. 13.4Awe apply K-means with four clusters. As K-means seeks
to generate groups with approximately the same size, it splits
group I into two and considers groups II and IV to be a single
group. Therefore, the K-means solution does not match the four
original groups as described. In Fig. 13.4B, we prescribe the use of
five clusters. This results in a new solution which is in greater
agreement with the underlying structure of the data than the earlier
solution with the correct number of clusters. This example
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illustrates how K-means can return suboptimal results even when
there is a multipeak underlying distribution of well-separated
clusters, and the right number of clusters is given. However, for
some applications, this could be an acceptable solution, in the same
way, that a linear approximation of an exponential distribution can
be useful in certain cases.

The above limitations could be considered characteristics of the algo-
rithm rather than drawbacks per se. However, is not uncommon to find
alarmed concerns about how K-means fails in some applications in the
literature. These reactions come from the assumption that machine
learning methods should be able to provide universal automatic solutions
for every problemdan unrealistic expectation resulting from the associ-
ation of these methods with the increasingly promising field of artificial
intelligence. The limitations of K-means should motivate researchers to
use this method in a thoughtful and critical manner, rather than aban-
doning it altogether.

13.2.4 Alternatives to K-means

In the last section, we have discussed some limitations of the K-means
algorithm. Here, we briefly present some alternatives to perform
clustering analysis when K-means is not the best fit for the problem. For
this, we return to the example given in Fig. 13.4 and see how the Gaussian
mixture model (GMM) and density-based spatial clustering of applica-
tions with noise (DBSCAN) can perform better in that situation.

(A) (B)

FIGURE 13.4 Example of K-means classification. Different shapes correspond to
different classes. The shapes are colored according to the K-means grouping. Region I corre-
sponds to a semicircular distribution of 1000 objects. Region II encloses a Gaussian distribu-
tion of 1000 objects with a standard deviation of 4.5 unities. Region III is a Gaussian
distribution of 1000 objects with a standard deviation of one unity. Region IV encloses a
Gaussian distribution of 100 objects with a standard deviation of 1 unity. Panel (A) shows
the result of K-means with four clusters whereas panel (B) shows the solution for five
clusters.
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13.2.4.1 Gaussian mixture model

The GMM (Pearson, 1894; Shanmugam, 2009) assumes that the
underlying distribution in the dataset can be described as the mixture of a
finite number of Gaussian (normal) distributions. The GMM fits Gaussian
distribution to generate groups of observations from the data. The main
limitation of GMM is that it can be successfully applied only when the
underlying distribution is a combination of Gaussian distributions. There
are other mixture models that assume other types of statistical distribu-
tions, but they will all have limitations when dealing with datasets
including groups with diverse shapes. Fortunately, in many scientific
applications, the distribution is actually a mixture of Gaussians, thus the
GMM algorithm can be successfully applied.

13.2.4.2 Density-based spatial clustering of applications with
noise

DBSCAN (Daszykowski & Walczak, 2010) uses the local density of the
space to group objects together and to define the cluster boundaries.
The main assumption of this algorithm is that the distance among edges
of the different groups is smaller than the distance among observations
inside the groups. This assumption is manifested through two funda-
mental parameters of the algorithm, the neighborhood radius (r) and the
minimal number of observations necessary to define a core object (nmin).
The core observations are defined as the observations in the distribution
that have at least nmin observations, including the observation itself,
inside of a radius r from it. A group is defined by at least one core
observation and all density-reachable points from the core observations. An
observation is density-reachable from a core observation if there is a path
between them that passes only through core observations. If an obser-
vation is not density-reachable from any core observation, it is considered
an outlier. Fig. 13.5 illustrates the process when nmin ¼ 4, with core
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FIGURE 13.5 Clustering analysis with density-based spatial clustering of applications
with noise with nmin¼ 4. The image shows core points (red [dark gray in print version]
circles), density-reachable objects (yellow [light gray in print version] triangles), and an
outlier point (blue [gray in print version] squares).
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observations represented as red dots, density-reachable observations
represented as yellow dots, and the outlier in the distribution represented
as the blue dot. In this example, all yellow and red dots would be part of
the same group. Therefore, in DBSCAN, there is no assumption that all
observations must belong to a cluster, as is the case in K-means; instead,
some observations can be classified as outliers.

The algorithm starts by selecting a random observation in the sample
and establishing whether or not it is a core observation. If it is a core
observation, then it propagates the classification through direct reachable
observations until there are no density-reachable points from the starting
core observation. The algorithm continues to randomly select other
observations from the unevaluated ones, each time creating a new group
until all observations in the dataset are assigned to a group or as an outlier.

13.2.4.3 Comparison of K-means with GMM and DBSCAN

In this section, we use the dataset in Fig. 13.4 to compare the perfor-
mance of the three models. Although the comparison can be done by
visual inspection, as the groups are well separated, we will use the
homogeneity score as a quantitative metric to compare the results. The
homogeneity score is similar to the accuracy score; however, the two
scores will differ when cluster labels are not matched. This is because the
random initialization of the clustering algorithms causes the labels of the
clusters to be shuffled during the classification; such shuffling will not
affect the homogeneity scoredwhere the labels of the clusters are
interchangeabledbut will affect the accuracy scoredwhere each cluster
must be associated with a specific label. For instance, Table 13.1 shows
two possible outcomes of the application of K-means to a dataset with
four objects. We see that both classifications 1 and 2 detect the presence of
two distinct groups within the dataset, resulting in a homogeneity score of
1 for both classifications; however, the measured accuracy score is 1 in the
first classification and 0 in the second classification. A formal definition of
the homogeneity score is given in Rosenberg and Hirschberg (2007).

TABLE 13.1 Homogeneity and the accuracy scores for two possible outcomes of a
clustering analysis. In the second column, each number represents the
classification of one observation. 0 means the observation is
considered a member of group g0 and 1 means the observation is
assigned to group g1. It can be seen that the homogeneity and
accuracy scores differ when cluster labels are not matched.

Group Homogeneity score Accuracy score

Classification 1 0, 0, 1, 1 1 1

Classification 2 1, 1, 0, 0 1 0

Ground truth 0, 0, 1, 1
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Fig. 13.6 shows how K-means, GMM, and DBSCAN compare in terms
of performance using two slightly different datasets. In Fig. 13.6A,B and
C, we present the dataset described in Fig. 13.4 grouped by the three
algorithms. We see that GMM performs slightly better than K-means.
Although we have three Gaussian distributions, the presence of one non-
Gaussian distribution is sufficient to negatively impact the performance
of the GMM algorithm. Here, GMM fails to identify the semicircular
distribution; instead it divides this into two groups. In contrast, we see the
DBSCAN perform much better than K-means and GMM. Moreover,
DBSCAN manages to successfully identify outliers in group II. It should
be noted that groups are colored according to the label assigned by the
algorithm; for instance, group III is colored in blue when K-means is used
(Fig. 13.6A) but is colored in red when GMM and DBSCAN are used
(Fig. 13.6B,C). This difference in coloring illustrates how the initialization
shuffles the final labels of the clusters. In addition to shuffling the final
labels, the randomness of the initialization impacts the results of the
algorithm, as shown in Fig. 13.3. Therefore, when performing clustering
analysis, it is important to feed the algorithms with known random seeds
and report these numbers in any scientific publication. The use of known
random seeds will guarantee that a random distribution can be exactly
reproduced.

(A)

(D) (E) (F)

(B) (C)

FIGURE 13.6 Comparison of the performances of K-means (left panels, (A) and (D)),
Gaussian mixture model (GMM) (middle panels, (B) and (E)), and density-based spatial
clustering of applications with noise (DBSCAN) (right panels, (C) and (F)). Two slightly
different datasets are presented in the top and bottom panels, respectively; in particular,
groups I and II have greater proximity in the dataset shown in the bottom panels than the one
shown in the top panels. This slight difference affects the performance of the algorithms,
especially in the case of DBSCAN.
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From the above example, considering only the top panels of Fig. 13.6,
one could naively conclude that DBSCAN is better than K-means and
GMM and decide to keep the former and discard the latter from their
machine learning tool kit. However, with a small modification of the
dataset, as shown in the bottom panels of Fig. 13.6, we can see that
DBSCAN is not universally better than the other models. In particular, by
shortening the distance between group I and group II, we break the main
assumption in DBSCAN, i.e., the distance intergroup is no longer much
larger than the distance among the observations within each group. In this
case, DBSCANperformsworse thanK-means andGMM.We also note that,
in both cases, GMM performs better than K-means; however, there will be
other instances where K-means performs better than GMM depending on
the characteristics of the dataset. This example highlights the importance of
understanding the models’ main assumptions and the underlying struc-
ture of the dataset. When applying clustering analysis, it is good practice to
try alternative clustering algorithms and use cluster validation metrics as
well as existing knowledge of the field to interpret the results.

13.3 Applications to brain disorders

Clustering analysis has long been applied to the investigation of a wide
range of brain disorders, including, among others, schizophrenia
(Carpenter, Bartko, Carpenter,& Strauss, 1976), eating disorder (Stice et al.,
2001), personality disorder (Petrocelli, Glaser, Calhoun,& Campbell, 2001),
panic disorder (Zilcha-Mano et al., 2015), and Parkinson’s disease (Verbaan
et al., 2010). The most frequent application involves the use of K-means to
identify subtypes of patients within a disorder, with the vast majority of
studies using clinical measurements as selected features and Euclidean
distance as the similarity metric. Another possible application of K-means
involves the investigation of patterns in the datadfor example, distinct
neurocognitive profilesdwhich are expressed above and beyond
diagnostic categories. A further possible application of K-means involves
the estimation of functional connectivity patterns from functional magnetic
resonance imaging (fMRI) data (Allen et al., 2014; Calhoun, Miller,
Pearlson, & Adali, 2014; Rashid, Damaraju, Pearlson, & Calhoun, 2014).
Below we review these applications to illustrate the potential benefits and
challenges of applying clustering analysis to brain disorders.

13.3.1 Identifying disorder subtypes

When applying K-means to the identification of subtypes of patients
within a brain disorder, most studies determined the number of clusters
either by using the knowledge of the field or combining K-means with the
Ward’s linkage hierarchical clustering (Abramowitz, Franklin, Schwartz,
& Furr, 2003; Aderka et al., 2012; Zilcha-Mano et al., 2015). The Ward’s
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linkage is a decision rule used to combine clusters, with the aim of
minimizing the ratio of within-group to between-group variation; this
type of rule is used in agglomerative clustering (AG). In AG, we start by
defining each observation in the dataset as a cluster; we then measure the
distance between each pair of clusters and decide whether or not to merge
them into a single cluster based in such distance. Using Ward’s linkage,
one can draw a tree of the distances between possible clusters in the
sample, which is called a dendrogram. The visual inspection of the
dendrogram can then help define the number of clusters in the sample. In
Fig. 13.7, we show the dendrogram of the dataset presented in Fig. 13.4.
The horizontal line represents the distance used as a threshold for
deciding whether or not to merge two clusters into one. We can see that
choosing a threshold between 18.7 and 20.4 would result in 5 clusters; a
threshold between 20.4 and 21 would result in 4 clusters; and a threshold
higher than 21 would result in 3 clusters. This shows that it is not trivial to
use a dendrogram to determine the optimal number of clusters because
there is no obvious way of deciding among the possible thresholds. If a
dendrogram does not solve the problem of determining the number of
clusters, the combination of K-means and Ward clustering can still help
conversion to the global minimum.

Abramowitz et al. (2003) have used K-means together with Ward
clustering to identify subtypes in a sample of 132 adult patients diagnosed
with obsessive-compulsive disorder. The algorithms were applied on
clinical measures obtained using a revised version of the YaleeBrown
ObsessiveeCompulsive Scale (Y-BOCS; Goodman et al., 1989a, 1989b).
The number of clusters was determined using Ward clustering, and the
centroid of the Ward-based clusters was used to initialize K-means. This
led to a solution with five groups, named as harming, contamination,

FIGURE 13.7 Dendrogram of the dataset presented in Fig. 13.4. Distances are measured
using Ward’s linkage clustering, and the horizontal line shows the distance used as a
threshold for deciding whether or not to merge groups.
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hoarding, unacceptable thoughts, and symmetry. Interestingly, when the
researchers compared the outcome of cognitive behavioral therapy
among the five groups, there were particularly poor responses in the
hoarding group in comparison with the other groups. This example
shows that the use of clustering analysis to identify disorder subtypes has
the potential of supporting clinical decision-making, for example, by
helping identify patients who are likely to show poor response to stan-
dard treatment and require additional support.

13.3.2 Identification of cross-diagnostic neurocognitive profiles

Our next exemplar application of clustering analysis refers to the iden-
tification of cross-diagnostic neurocognitive profiles. In Lewandowski,
Sperry, Cohen, and Öngür (2014), the authors used clinical and cognitive
measures to investigate neurocognitive variability in a cross-diagnostic
sample of patients with psychotic disorders. The sample included 41
patients with schizophrenia, 53 patients with schizoaffective disorder, and
73 patients with bipolar disorder with psychosis. The researchers used
Ward clustering and K-means independently and then compared the re-
sults; the aim was to look for a consistent pattern of results that was sup-
ported by both algorithms. In this case, therefore, the centers of the Ward
classification were not used as input for K-means as in Abramowitz et al.
(2003), as this would have introduced artificial consistency between the
two results. The results suggested that the total sample could be divided
into four groupswith distinct neurocognitive profiles: a neuropsychologically
normal cluster, a globally and significantly impaired cluster, and two
clusters of mixed cognitive profiles. These four groups were distributed
across the three diagnostic categories; in other words, there was no corre-
spondence between neurocognitive profile and diagnosis. This may either
indicate that the clustering model was not appropriate to the geometry of
the problem or that diagnostic categories do not really map to distinct
neurocognitive profiles. The authors also applied the analysis of variance
(ANOVA) to the four clusters to confirm the existence of the four neuro-
cognitive profiles. It is worth mentioning, however, that the application of
ANOVA to the same data used to generate the clusters may not provide
confirmation of the existence of a multipeak distribution. Instead, such
application could lead to the conclusion that the clusters are distinct even
when the underlying distribution is a single-peak distribution. A more
informative approach might be to use different sets of data to perform the
clustering and validate it. For example, one could use clinical data to group
patients using K-means and then use ANOVA on brain imaging data from
the same patients to confirm the significance of the groups.

13.3.3 Investigation of functional connectivity states in fMRI

Our final exemplar application of clustering analysis refers to the
investigation of functional connectivity from fMRI data. Allen et al. (2014)
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argue that the assumption that functional connectivity is stationary
throughout the duration of a scanning session can limit the value of the
findings. The authors addressed this issue by proposing an approach that
combines independent component analysis (ICA) and K-means to estimate
temporal variability in functional connectivity states across 405 subjects.
ICA is a dimensionality reduction method, in some aspects similar to
principal component analysis (PCA), discussed in the previous chapter. An
important difference between ICA and PCA is that ICA derives compo-
nents that are statistically independent but not necessarily orthogonal
between each other; whereas PCA generates orthogonal components. In
addition, while ICA creates components that are focused on more local
features of the data, PCA creates components that express more global
features. For an in-depth comparison between the two dimensionality
reductionmethods, we refer to Draper, Baek, Bartlett, and Beveridge (2003).

In the context of resting-state fMRI, ICA is used to decompose the
whole-brain data into homogeneous regions that can be used to analyze
the data consistently across subjects. In Allen et al. (2014) the components
derived from ICAwere used to build a covariance matrix for each subject.
The values in the covariance matrices were then grouped using K-means.
In particular, the authors used the ratio between within-group and
between-group mean distances to determine the optimal number of
clusters. This was implemented using Manhattan distances instead of
Euclidian distances as in the previous examples; this decision was taken
to mitigate the so-called curse of dimensionality, i.e., the fact that even
simple problems, such as the grouping of two well-separated balanced
Gaussian distributions, can be very challenging if the number of
dimensions is too high. K-means is susceptible to the curse of dimen-
sionality, mainly because the information in the distance measurement
loses sensitivity as the number of dimensions increases (due to the growth
of the volume of the space). However, Manhattan distances are less
affected by the curse of dimensionality than Euclidian distances and
therefore should be preferred when dealing with high-dimensional
datasets. Using Manhattan distances, Allen et al. (2014) were able to
identify, for the first time, time-dependent functional connectivity states
in resting-state imaging data between regions in lateral parietal and
cingulate cortex. These findings challenge the traditional notion of
stationary connectivity patterns in the human brain and provide evidence
for temporal flexibility in the functional coordination within and neural
networks. The future investigation of this temporal flexibility in patients
with psychiatric and neurological conditions could help refine our
understanding of the neurofunctional basis of these disorders.
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13.4 Conclusion

More than 60 years after its original development, K-means remains a
relevant algorithm in many fields of science. Owing to its agility and
simplicity, K-means offers a simple way of extracting data-driven groups
from datasets. Data-driven grouping can be particularly useful when
dimensionality is high and there is no labeled data to train any supervised
models. In psychiatry and neurology, it has been extensively used to
identify subtypes within a certain disorder of interest (Abramowitz et al.,
2003; Calamari, Wiegartz, & Janeck, 1999). In addition, even when labeled
data are available, clustering can be useful to review and refine the
definition of these labels. For instance, Lewandowski et al. (2014) reported
cross-diagnostic neurocognitive profiles that do not map to diagnostic
categories.

Like all machine learning algorithms, K-means has its limitations. For
example, the emphasis on minimizing the global SSE can result in
misleading grouping, as shown in Fig. 13.4. Unbalanced samples and
clusters with diverse shapes or sizes are particularly challenging to
K-means. Defining the number of clusters is a fundamental step and can
be challenging when we do not have a well-grounded knowledge of the
data. To overcome these problems, we suggest the application of the dip
test to determine if there is a multipeak distribution in the data, and the
use the silhouette score in the definition of the number of clusters and in
the interpretation of the results. When the data violate the main
assumptions of K-means, we recommend the application of other clus-
tering methods. A further limitation of K-means and other types of
clustering analysis is that the results can be difficult to replicate (Verbaan
et al., 2010). This is because of the lack of information on the imple-
mentation of the model. The performance of most algorithms depends
on a series of hyperparameters including random seeds; therefore, to
ensure replicability, we recommend the transparent reporting of how the
model is implemented including its hyperparameters. We have argued
that ANOVA does not help validate the clustering unless different sets of
features are used to perform and validate the clustering. While there are
some validation algorithms, the ultimate analysis and interpretation of
groups must be informed by expert knowledge of the field.

Given the huge volume of unlabeled data constantly generated in
many fields, unsupervised learning is a fundamental tool. In the context
of brain disorders, it can potentially generate clinical useful insights, for
example, by revealing subgroups of patients who are likely to show
different clinical outcomes (Abramowitz et al., 2003).
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13.5 Key points

• Clustering analysis is a type of unsupervised learning which aims to
find the most natural way of grouping a dataset.

• K-means is the most popular clustering algorithm and is fast and
simple to implement.

• Alternative clustering algorithms include DMM and DBSCAN.
• Before applying any clustering algorithm, it is important to

understand the nature of the dataset and the aim of the analysis.
• In clustering analysis, the choice of the number of clusters is a critical

step. Some algorithms explicitly ask for this information, others use
hyperparameters to derive it.

• Cluster validation techniques, such as the SSE and the silhouette
score analysis, can be used to help access the quality of the clustering
and the number of groups in a dataset.

• Transparent reporting of how the clustering algorithm is
implemented, including the random seeds used for initialization, is
a key to guarantee reproducibility.
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